Solutions to Workbook-2 [Mathematics] | Permutation & Combination

DAILY TUTORIAL SHEET 8 Level - 2

- Choose two women is ${}^{9}C_{2}$ ways and choose two men in ${}^{9}C_{2}$ ways. Therefore, total number of ways 156.(C) $= {}^{9}C_{2} \cdot {}^{9}C_{2} \cdot 2$
- Say x_1 of them show "1", x_2 of them show "2" and so on x_6 of them show "6" 157.(A) $\Rightarrow x_1 + x_2 + x_3 + ... + x_6 = n$ Total number of outcomes is equal to the total number of non-negative solutions $\Rightarrow n+6-1C_{6-1} = n+5C_5$.
- **158.(CD)** Three numbers a, b, c are in A.P, if 2b = a + cL.H.S. is even so should the R.H.S.

Say *n* is odd, then total number of odd numbers = $\frac{n+1}{2}$ and total number of even numbers = $\frac{n-1}{2}$.

Once you pick a and c, b is fixed. Therefore, total number of A.P.s = $\left(\frac{n+1}{2}C_2 + \frac{n-1}{2}C_2\right) \cdot 2!$.

Find out the total number of A.P.s if n is even.

159.(BD) Let x_5 be the dummy non-negative integer which when added to the L.H.S. of the inequality $x_1 + x_2 + x_3 + x_4 \le n$ converts it into an equality. Now, $x_1 + x_2 + x_3 + x_4 + x_5 = n$.

There's a bijection between the number of solutions of the inequality and the number of solutions of the equation.

Therefore, the total number of solutions = $^{n+5-1}C_{5-1} = ^{n+4}C_4 = ^{n+4}C_n$.

- Not all correct answers can be made in 2^{10} 1 ways. 160.(BC)
 - This can be attempted in 2^{10} –1 ways (A) This can be done in $2^{10} - 2$ ways **(B)**
 - **(C)** This can be done in $2^{10} 1$ ways
- This can be done in 10 ways.
- $\textbf{161.(BC)} \qquad {}^{2n}P_n = \frac{|2n}{n} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot - 2n}{|\underline{n}|} = \frac{\left(2 \cdot 4 \cdot 6 \cdot 8...2n\right)\left(1 \cdot 3 \cdot 5 -\right)}{|n|} = \frac{2^n\left(|\underline{n}|\right).\left(1 \cdot 3 \cdot 5 -.\right)}{|n|} = 2^n.\left(1 \cdot 3 \cdot 5 -.\right)$

Also
$${}^{2n}p_n = \frac{|2n|}{|n|} = \frac{1 \cdot 2 \cdot 3 \cdot - - \cdot n \cdot (n+1)(n+2) - -(n+n)}{|n|} = (n+1)(n+2)(n+3) - -(n+n)$$

- **162.(BD)** (A) No. of ways = $\frac{|n-1|}{|p|}$ (B) No. of ways = $^{n-1}C_p$ (C) No. of ways = $^{n-1}C_{p-1}$ (D) No. of ways = $^{n-1}C_p$
- **163.(ABCD) (A)** $3 \times 7!$
 - **(B)** Total no. of arrangements of 'r' white and 15 r black balls = $\frac{15!}{r!(15-r)!}$
 - (C) Total no. of combinations = $5 \times 6 \times 2^3 = 240$ (D) Total no. of selections = 35
- P = (n-r)...(n-2)(n-1)n(n+1)(n+2)...(n+r) is multiplication of 2r+1 consecutive integers which 164.(BC) is divisible by (2r+1)!.
- $f(n) = 1! + 2! + 3! + \dots + n!$ 165.(AB) $f(n+1) = 1! + 2! + 3! + \dots + (n+1)!$

$$f(n+2) = 1! + 2! + 3! + \dots + (n+2)!$$

$$f(n+2) - f(n+1) = (n+2)! = (n+2)(n+1)! = (n+2)[f(n+1) - f(n)]$$

$$\Rightarrow f(n+2) = (n+3)f(n+1) - (n+2)f(n) \Rightarrow P(x) = x+3, \ Q(x) = -x-2$$

166.(AD) Number of selections of 7 digits out of the digit 1, 2, 3, ..., $9 = {}^{9}C_{7}$

Number of digits out of these 7 selected digits excluding the greatest digit = 6

These 6 digits can be divided in two groups each having 3 digits = $\frac{6!}{3!3!2!} = {}^6C_3 \times \frac{1}{2!}$

But the 3 digits on one side can go on the other side

$$\therefore$$
 Required number of ways = ${}^{9}C_{7}$. ${}^{6}C_{3}$. $\frac{1}{2!}$. $2! = {}^{9}C_{7}$. ${}^{6}C_{3} = {}^{9}C_{2}$. ${}^{6}C_{3}$

167.(ABCD) Let the friends be $F_1, F_2, F_3, F_4, \ldots, F_8, F_9, F_{10}, F_{11}$

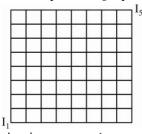
Thus, required ways = Total number of ways - Number of ways when two particular friends F_1 and F_2 (say) are invited = ${}^{11}C_{35} - n(F_1F_2...) = {}^{11}C_5 - {}^{9}C_3$ ways. \Rightarrow (A)

Also,
$$n(F_1\overline{F}_2...) = {}^9C_4 + n(F_2\overline{F}_1...) = {}^9C_4 + n(\overline{F}_1\overline{F}_2...) = {}^9C_5$$

 $\Rightarrow {}^9C_5 + 2({}^9C_4) = {}^9C_4 + 2({}^9C_4) = 3({}^9C_4) \text{ ways} = 3 \times (126) = 378 \text{ ways}.$

168.(ABCD)

Let x be the number of horizontal steps taken by I_1 and x' that by I_2 and let y be the number of vertical steps taken by I_1 and y' by I_2 .



$$\therefore x + y = x' + y'$$

(: speed of I_1 and I_2 are equal)

Further x + x' = 8 and y + y' = 8

$$\Rightarrow$$
 $x' = 8 - x$; $y' = 8 - y$

$$\therefore x + (y) = (8 - x) + (8 - y) \Rightarrow 2(x + y) = 16 \Rightarrow x + y = 8$$

$$\Rightarrow y = 8 - x$$

∴ To meet at any point

	Horizontal	Vertical
I_1	X	8 – <i>x</i>
I_2	8 – <i>x</i>	x

Number of ways in which I_1 can take x horizontal steps and (8-x) vertical steps

$$= \frac{\left[x + (8 - x)\right]!}{x!(8 - x)!} = \frac{8!}{x!(8 - x)!} = {}^{8}C_{x}$$

Similarly, I_2 can take (8-x) horizontal steps and x vertical in 8C_x ways.

 \therefore The two can meet corresponding to a particular value of x in ${}^{8}C_{x} \times {}^{8}C_{x} = \left({}^{8}C_{x}\right)^{2}$ ways.

But $x \in \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$

:. Total number of ways in which two insects can meet during their journey.

Vidyamandir Classes

$$=\sum_{x=0}^{8} {8 \choose x}^2 = {8 \choose 0}^2 + {8 \choose 0}^2 + {8 \choose 0}^2 + \dots + {8 \choose 0}^2 = {8 \choose 0}^2 = {8 \choose 0}^2 + \dots + {8 \choose 0}^2 +$$

 \Rightarrow (D) is correct option.

$$\text{Further } ^{16}C_8 = \frac{16\times15\times14\times13\times12\times11\times10\times9}{1\times2\times3\times4\times5\times6\times7\times8} \qquad \Rightarrow \qquad \text{(A) is correct.}$$

$$=\frac{\left(2\right)^4\times2\times\left(2\right)^2\left(15\times7\times13\times3\times11\times5\times9\right)}{1\times2\times3\times4\times5\times6\times7\times8}=\left(2\right)^8\left(\frac{1}{1}\right)\!\!\left(\frac{3}{2}\right)\!\!\left(\frac{5}{3}\right)\!\!\left(\frac{7}{4}\right)\!\!\left(\frac{9}{5}\right)\!\!\left(\frac{11}{6}\right)\!\times\!\left(\frac{13}{7}\right)\!\times\!\left(\frac{15}{5}\right)\!\!\left(\frac{11}$$

 \Rightarrow (B) is correct.

$$= \left(\frac{2}{1}\right) \left(\frac{6}{2}\right) \left(\frac{10}{3}\right) \left(\frac{14}{4}\right) \left(\frac{18}{5}\right) \left(\frac{22}{6}\right) \times \left(\frac{26}{7}\right) \times \left(\frac{30}{8}\right) \qquad \Rightarrow \qquad \text{(C) is correct.}$$

Note that the number of ways in which I_1 and I_2 meet being numerically equal to number of ways in which I_1 completes its journey is not a coincidence. Every way in which I_1 and I_2 meet gives us a unique path for I_1 to complete its journey because I_1 can simply retrace the steps taken by I_2 before meeting I_1 to reach its destination.

- **169.(AD)** Case 1: When two points from non-collinear points and two points from collinear points are taken to form a quadrilateral. Number of possible quadrilaterals = ${}^{7}C_{2} \times {}^{5}C_{2}$
 - Case 2: When three points from non-collinear points and one point from collinear points are taken to form a quadrilateral.

Number of possible quadrilaterals = ${}^{7}C_{3} \times {}^{5}C_{1}$.

Case 3: All the four points are taken from non-collinear points to form a quadrilateral.

Number of possible quadrilaterals = ${}^{7}C_{4}$

$$\therefore$$
 Total possible quadrilaterals = ${}^{7}C_{2} \times {}^{5}C_{2} + {}^{7}C_{3} \times {}^{5}C_{1} + {}^{7}C_{4}$

$$=21\times10+35\times5+35=420=7\times6\times5\times2=2\left(\frac{7!}{4!}\right)=2.^{7}P_{3}$$

170.(BCD) Let the occupied seat is represented by G and vacant by R, thus we are booking for permutation of 4G and 6R such that no two G are together.

Consider it is equal to number of ways of choosing 4 places out 7 vacant place = ${}^{7}C_{4}$

 \Rightarrow Number of ways of arranging 4 people in 7 is required ways = ${}^{7}C_{4} \times 4! = {}^{7}C_{3} \times 4! = 840$

58